Code No.: 14513 N/O

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Mech. Engg.: CBCS) IV-Semester Main & Backlog Examinations, May-2019

Basics of Electrical & Electronics Engineering

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No	Stem of the question	M	L	C	P
	$Part-A (10 \times 2 = 20 Marks)$				
1.	Find the current supplied by the battery in the circuit of Fig.1.	2	1	1	1,2
	8Ω				
	$= 24V \qquad 6\Omega$				
	- m				
	12 Ω				
	Fig.1.				
2.	Identify the importance of 3 phase circuits.	2	3	1	1
3.	Classify transformers based on the type of construction.	2	4	2	1
4.	Describe the difference between the squirrel cage Induction Motor and Slip ring Induction Motor.	2	1	2	1
5.	Compare half wave and full wave rectifiers.	2	4	3	1
6.	What is a bipolar transistor? How are its terminals named?	2	1	3	1
7.	List out the benefits of negative feedback used in an amplifier design.	2	4	4	1
8.	Write the properties of an ideal Operational Amplifier.	2	1	4	1
9.	Find $(AB36)_{16} + (258C)_{16}$.	2	1	5	-1,
10.	Explain about Universal gates.	2	2	5	1
	Part-B ($5 \times 8 = 40 \text{ Marks}$)				
11.	a) State and explain Kirchhoff's laws. Determine the current supplied by the battery in the circuit shown in Fig.2.	4	1	1	1,
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	+ 230				
	100 V 100 Ω €				
	TE SPIN				
	100 Ω				
	D W				
	Fig.2.				

Code No.: 14513

:: 2 ::

	,	Determine the line current in an unbalanced, star-connected load supplied from a symmetrical 3- phase, 440-V system. The branch impedance of the load are $Z_R = 5+j30 \Omega$, $Z_Y = 10+j45 \Omega$ and $Z_B = 10+j60 \Omega$. The phase sequence is RYB.	4	1	1	1,2
12.	a)	Clearly explain the speed control methods of DC shunt motor.	4	2	2	1
	b)	Explain about the principle of operation of a 1-Φ split-phase induction motor.	4	2	2	1
13.	a)	With the help of necessary graphs and sketches explain about SCR characteristics and its applications.	4	2	3	1
	b)	Compare CB, CC and CE configurations of BJT.	4	4	3	1
14.	a)	Develop Differentiator and Integrator circuits using Op-amps and explain their operation.	4	3	4	1,2
	b)	Derive an expression for the output voltage of Inverting and non-inverting OP AMP.	4	2	4	1,2
15.	a)	Construct the logic diagram of a full subtractor using NAND gates only.	4	3	5	1
	b)	Explain the principle of clocked RS-flip flop with its logic diagram.	4	2	5	1
16.	a)	Derive an expression for the total power in a 3-phase circuit in terms of line voltages and line currents. Show that the power is same whether the load is delta connected or star connected.	4	4	1	1
	b)	"An induction motor cannot run at synchronous speed". Justify	4	5	2	1
17.	A	nswer any two of the following:				
	a)	With circuit diagram and necessary waveforms explain the operation of full-wave rectifier with capacitive filter.	4	2	3	1
	b)	Explain with a neat circuit diagram the operation of OP AMP as Adder and Subtractor.	4	4	4	1
	c)	Explain the working of a clocked Data Flip Flop with neat diagram.	4	2	5	1

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	60
2	Knowledge on application and analysis (Level-3 & 4)	35
3	*Critical thinking and ability to design (Level-5 & 6)	05
	(*wherever applicable)	

ශශශනනන